Introduction of pluggable 400G coherent optics, what does it mean for you?

Keith Chan (Go SD-X / Independent Consultant) Go SD-X Kent Lidstrom (Smartoptics / CTO) smartoptics





# Agenda

DWDM Primer for IP Professionals

#### Introduction to Coherent 400G

- Building concepts
- Standards
- Product Availability
- 400 Optical Performance
- Case Study



# **DWDM Primer for IP Professionals**

Keith Chan

keithchan@gosd-x.com Independent Consultant

30 Jul 2021 Go SD- X



# What is Wavelength Division Multiplexing (WDM)?

- A transmission technology that multiplexes multiple optical carrier signals on a single fiber by using different wavelengths (colors) of laser light to carry different signals or frequencies
- The effective capacity of existing fiber plant can be increased by a factor of 40, 80, and 96





WDM turns a single pair of fibers into

# **Basic Building Blocks of a DWDM System**



# **Optical Transmission Challenges and Solutions**

### **#1** Fiber Attenuation



Challenge

Decay of signal strength as the signal propagates through the fiber from Site A to Site B





The signal is amplified with an EDFA amplifier

The EDFA also adds Amplified Spontaneous Emissions (ASE) noise. This causes another challenge with Optical Signal to Noise Ratio (OSNR)

# **Optical Transmission Challenges and Solutions**

### #2 Chromatic Dispersion



Challenge

Wavelengths arrive at different times causing the signal to spread as it travels through the fiber



Solution

# The signal is dispersion compensated via a Dispersion Compensation Device





### Data Center Interconnect (DCI) Architecture

# You may Google the DWDM Terminologies below when you have time – Enjoy your reading!

- Decibels (dB) for relative measurements, like 'half' or 'double'
  - Gain and Attenuation/Loss are in dB
- Decibels-milliwatt (dBm) an absolute value based on 0dBm=1mW
  - Output power and Receiver sensitivity are in dBm
- Grey (850nm/1310nm/1550nm) vs Colored Optics (DWDM: 15xx nm)
- Wavelength ( $\lambda$  in nm) distance from one peak to the next
- Frequency (f in THz) inverse relationship to wavelength f=c/  $\lambda$
- Dispersion spreading of the light pulse (Modal/CD/PMD)
- Optical Signal to Noise Ratio (OSNR) ratio of optical signal power to noise power for the receiver
- Bit Error Rate (BER) typical acceptable rate is 10<sup>-12</sup>
- ITU Grid Wavelength standard for DWDM systems
- ROADM Reconfigurable Optical Add/Drop Multiplexer
- Open Pluggable Transceivers OpenZR+ (<u>http://openzrplus.org/</u>) and Open XR Forum (<u>https://www.openxrforum.org/</u>)
  GoSD-X
  Open Pluggable Coherent Optics A Game Changer for the industry!!!

# Introduction to Coherent 400G





smartoptics

### 400G in Metro Networks – Traditional building concept



### 400G in Metro Networks – Embedded building concept



### **400G Industry Standards**

There are three principal initiatives to provide standardized 400G solutions.



### **Extreme complexity**



#### smartoptics

#### Where are the modules?

We have today shipped OIF 400ZR transceivers to a customer in Europe.



SO-TQSFP-DD-4CC-ZR

| Application<br>mode | Host format | Electrical interface  | Payload | FEC  | Modulation | Operating<br>reach | MSA format                 |
|---------------------|-------------|-----------------------|---------|------|------------|--------------------|----------------------------|
| 1                   | 400GBASE-R  | 1x 400GAUI-8 (8x 50G) | 400G    | CFEC | DP-16QAM   | 80km               | OIF 400ZR<br>app code 0x01 |
| 2                   | 400GBASE-R  | 1x 400GAUI-8 (8x 50G) | 400G    | CFEC | DP-16QAM   | 25km               | OIF 400ZR<br>app code 0x02 |

The OIF 400ZR transceiver is released but with limited availability.

The OpenZR+ transceiver has been generally available since Q2.

smartoptics

#### Where are the 400G systems?

 System vendors have already released products that support 400G, but lack SW to support these modules.

• Expect OIF 400ZR and OpenZR+ support roll-out during 2021.

 Will system vendors block OIF 400ZR and OpenZR+ 3<sup>rd</sup> party transceivers?





smartoptics

# **400G Optical Performance**



### **Optical challenges using 400ZR in passive networks**

#### **TTF Filter Bandwidth**

Typical bandwidth of 8ch DWDM filter: ~30 (<60)GHz Typical bandwidth of a 400ZR signal: ~63GHz

#### **AWG Filter Loss**

40ch Mux/Demux have sufficient bandwidth 40ch Mux/Demux loss: 12dB 11 dB 400ZR Optical Budget:

**Solution:** New filters with higher bandwidth



922



smartoptics

### **400ZR Optical Performance over Open Line Systems**

#### Pre-FEC BER & OSNR vs Link Length

- No optical penalty for distances below 100km (~22 dB)
- Well within specification up to 120km fibre distance (~26 dB)



#### smartoptics

### 400ZR optical performance for in ROADM networks

| OSNR | performance | 21 dB | Link Span |
|------|-------------|-------|-----------|
|------|-------------|-------|-----------|

| Name    | Span no | OSNR (dB) |
|---------|---------|-----------|
| Tx OSNR | 0       | 33,4      |
| Span 1  | 1       | 30,4      |
| Span 2  | 2       | 27,9      |
| Span 3  | 3       | 26,3      |
| Span 4  | 4       | 25,1      |
| Span 5  | 5       | 24,2      |
| Span 6  | 6       | 23,5      |
| Span 7  | 7       | 22,8      |
| Span 8  | 8       | 22,3      |
| Span 9  | 9       | 21,8      |
| Span 10 | 10      | 21,3      |
| Span 11 | 11      | 20,9      |
| Span 12 | 12      | 20,6      |
| Span 13 | 13      | 20,2      |
| Span 20 | 20      | 18,3      |

| Traffic format | OSNR tolerance (dB) | CD Tolerance (ps/nm) | ROADM Hops |
|----------------|---------------------|----------------------|------------|
| OIF 400ZR      | 26                  | 2,400                | 3          |
| OpenZR+ 400G   | 24                  | 20,000               | 5          |
| OpenZR+ 300G   | 21                  | 40,000               | 10         |
| OpenZR+ 200G   | 16                  | 50,000               | 20+        |
| OpenZR+ 100G   | 12.5                | 100,000              | 20++       |



#### smartoptics

# Case Study





smartoptics

### **The Network**

#### Network

- The operator built dedicated rings
- Each ring consists of 6-8 nodes
- Decision was made to select 400G technology due to very attractive cost per bit
- Different Applications
  - · Passive on some of the links
  - OLS on some
  - Fiber directly connected on dark fiber

#### **Benefits:**

- Reduced amount of network equipment
  - Lower power consumption
  - Smaller footprint
- Protection provided by packet layer
- Lowest cost per bit

### smartoptics



### **Overview of Smartoptics**

#### **Smartoptics at a glance**

| Founded  |         | 2006                                                           |  |
|----------|---------|----------------------------------------------------------------|--|
| CEO      |         | Magnus Grenfeldt                                               |  |
| Products |         | Optical solutions & services<br>Optical devices (transceivers) |  |
|          | Norway  | Operations (devices), sales                                    |  |
| S        | Sweden  | R&D, production, sales, pre-sales, services and management     |  |
| tion     | UK      | Sales                                                          |  |
| Loca     | Germany | Sales, pre-sales                                               |  |
|          | US      | Sales, pre-sales, operations, services                         |  |
|          | Poland  | Sales                                                          |  |

#### Geographical footprint



#### smartoptics

# Thank you!





