cisco

IPv6 Security in SP Operation

Joe Wang, jiwang@cisco.com

Consulting System Engineer, APAC SP CTO Office

Agenda

- Management Plane
- Control Plane

Routing Information Neighbor Discovery Control Plane Protection

Data Plane

Anti-spoofing Access Control List Tunnel loops

Management over IPv6

- SSH, syslog, SNMP, NetFlow all work over IPv6,
 - Other applications: FTP, TFTP, Telnet, NTP, CNS Agents, Config logger, HTTP, Netconf, SOAP, IPSLA
- Dual-stack management plane
 More resilient: works even if one IP version is down
 More exposed: can be attacked over IPv4 and IPv6
- Currently under development: RADIUS

But, IPv6 RADIUS attributes can be transported over IPv4

Preventing IPv6 Routing Attacks Protocol Authentication

• BGP, ISIS, EIGRP no change:

An MD5 authentication of the routing update

- OSPFv3 has changed and pulled MD5 authentication from the protocol and instead is supposed to rely on transport mode IPSec
- RIPng and PIM also rely on IPSec

BGP Route Filters

- Pretty obvious for customer links
- For peering, a relaxed one

```
ipv6 prefix-list RELAX deny 3ffe::/16 le 128
ipv6 prefix-list RELAX deny 2001:db8::/32 le 128
ipv6 prefix-list RELAX permit 2001::/32
ipv6 prefix-list RELAX deny 2001::/32 le 128
ipv6 prefix-list RELAX permit 2002::/16
ipv6 prefix-list RELAX deny 2002::/16 le 128
ipv6 prefix-list RELAX deny 0000::/8 le 128
ipv6 prefix-list RELAX deny fe00::/9 le 128
ipv6 prefix-list RELAX deny ff00::/8 le 128
ipv6 prefix-list RELAX deny ff00::/8 le 128
ipv6 prefix-list RELAX deny ff00::/8 le 128
```

Source: http://www.space.net/~gert/RIPE/ipv6-filters.html

Link-Local Addresses vs. Global Addresses

- Link-Local addresses, fe80::/16, (LLA) are isolated Cannot reach outside of the link
 Cannot be reached from outside of the link ③
- Could be used on the infrastructure interfaces


Routing protocols (inc BGP) work with LLA

Benefit: no remote attack against your infrastructure

Implicit infrastructure ACL

Note: need to provision loopback for ICMP generation (notably *traceroute* and PMTUD)

LLA can be configured statically (not the EUI-64 default) to avoid changing neighbor statements when changing MAC

ARP Spoofing is now NDP Spoofing: Threats

- ARP is replaced by Neighbor Discovery Protocol Nothing authenticated Static entries overwritten by dynamic ones
- Stateless Address Autoconfiguration rogue RA (malicious or not) All nodes badly configured DoS Traffic interception (Man In the Middle Attack)
- Attack tools exist (from THC The Hacker Choice) Parasit6 Fakerouter6

© 2010 Cisco and/or its affiliates. All rights reserved

. . .

ARP Spoofing is now NDP Spoofing: Mitigation

- SEMI-BAD NEWS: nothing yet like dynamic ARP inspection for IPv6 Will require new hardware on some platforms
 First phase (Port ACL & RA Guard) available since Summer 2010 http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-first_hop_security.html
- GOOD NEWS: Secure Neighbor Discovery

SEND = NDP + crypto IOS 12.4(24)T But not in Windows Vista, 2008 and 7 Crypto means slower...

Other GOOD NEWS:

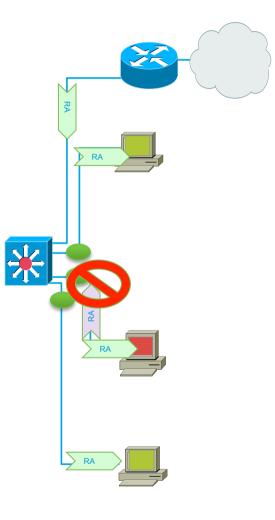
Private VLAN works with IPv6 Port security works with IPv6 801.x works with IPv6

First Hop Security Since 2010 Protecting against Rogue RA

 Port ACL block all ICMPv6 Router Advertisements from hosts

interface FastEthernet3/13
 switchport mode access
 ipv6 traffic-filter DROP_RA in
 access-group mode prefer port

• RA-guard feature in host mode (12.2(33) SXI4 & 12.2(54)SG): also dropping all RA received on this port


interface FastEthernet3/13

switchport mode access

ipv6 nd raguard

access-group mode prefer port

IPv6 Address Scanning can Harm CPU

- IPv6 address scanning (nmap) is pretty useless but...
- Potential router CPU attacks if aggressive scanning Router will do Neighbor Discovery... And waste CPU and memory IOS has built-in rate limiter but no option to tune it Destination Guard is coming ⁽ⁱ⁾
- Using infrastructure ACL to prevent this scanning
 Easy with IPv6 because new addressing scheme can be done ©

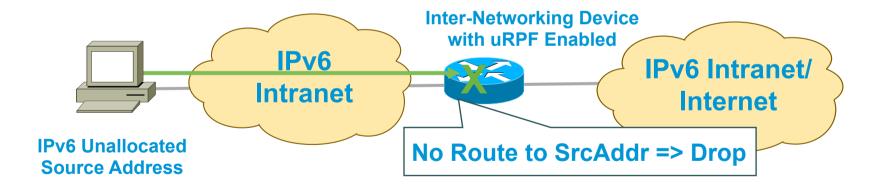
Control Plane Protection for IPv6

- Against DoS with NDP, Hop-by-Hop, Hop Limit Expiration...
- Software routers (ISR, 7200): works with CoPPr (CEF exceptions)

```
policy-map COPPr
class ICMP6_CLASS
  police 8000
class OSPF_CLASS
  police 200000
class class-default
  police 8000
!
control-plane cef-exception
  service-policy input COPPr
```

DoS Example Ping-Pong over Physical Point-to-Point

- Same as in IPv4, on real P2P without NDP, if not for me, then send it on the other side... Could produce looping traffic
- Classic IOS and IOS-XE platforms implement RFC 4443 so this is not a threat • Except on 76xx see CSCtg00387 (tunnels) and few others IOS-XR see CSCsu62728 Else use /127 on P2P link (see also RFC 6164) 7 Or use infrastructure ACL or only link-local addresses 10,2007.008... 2) To 2001:db8::3 **R2** 3) To 2001:db8::3 **R1** Serial 0/0 Serial 0/0 2001:db8::1/64 2001:db8::2/64 4) To 2001:db8::3 5) To 2001:db8::3

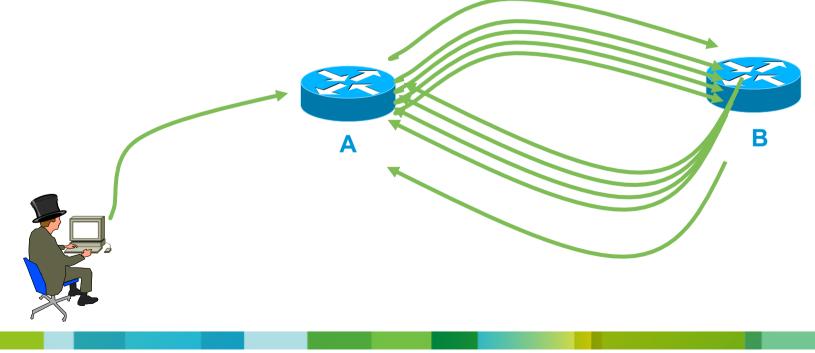

IPv6 Bogon Filtering and Anti-Spoofing

• IPv6 nowadays has its bogons:

http://www.team-cymru.org/Services/Bogons/fullbogons-ipv6.txt

Similar situation as IPv4

=> Same technique for single-homed edge= uRPF



Type 0 Routing Header One issue: Amplification Attack

- Beside the well-known dumb firewall by-pass...
- What if attacker sends a packet with RH containing

A -> B -> A -> B -> A -> B -> A -> B .-> A .-> B -> A

- Packet will loop multiple time on the link R1-R2
- An amplification attack!

IPv6 Extended Access Control Lists

• Very much like in IPv4

Filter traffic based on

Source and destination addresses

Next header presence

Layer 4 information

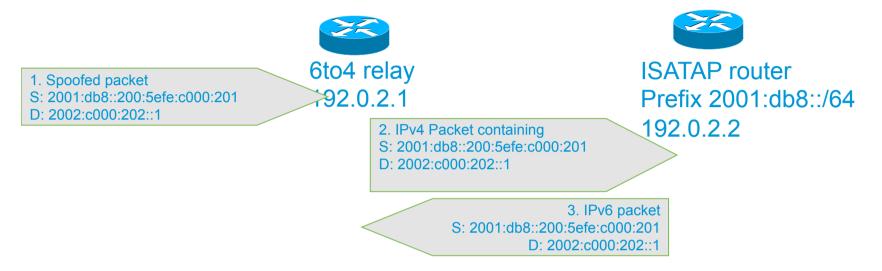
Implicit deny all at the end of ACL

Empty ACL means traffic allowed

Reflexive and time based ACL

• Known extension headers (HbH, AH, RH, MH, destination, fragment) are scanned until:

Layer 4 header found


Unknown extension header is found

© 2010 Cisco and/or its affiliates. All rights reserved

Example: Generic ACL on PE-CE or peering

ipv6 access-list SIMPLE remark Drop evil routing header type 0 deny ipv6 any any routing-type 0 remark Allow unicast global to other valid destinations remark 2000::/3 to be replaced/amended when ULA are used permit ipv6 2000::/3 2000::/3 permit ipv6 2000::/3 fe80::/16 permit ipv6 2000::/3 FF00::/8 remark Allow link-local to other valid destinations permit ipv6 FE80::/64 FE80::/64 permit ipv6 FE80::/64 FF02::/16 permit ipv6 FE80::/63 2000::/3 remark Catch-up deny ipv6 any any

Looping Attack Between 6to4 and ISATAP

Repeat until Hop Limit == 0

- Root cause
 - Same IPv4 encapsulation (protocol 41)
 - Different ways to embed IPv4 address in the IPv6 address
- ISATAP router:
 - accepts 6to4 IPv4 packets
 - Can forward the inside IPv6 packet back to 6to4 relay
- Symmetric looping attack exists

Mitigation:

Easy on ISATAP routers: deny packets whose IPv6 is its 6to4
Less easy on 6to4 relay: block all ISATAP-like local address?
Good news: not so many open ISATAP routers on the Internet

http://www.usenix.org/events/woot09/tech/full_papers/nakibly.pdf

Thank you.

#